Gravitons are the name for the quanta of the (hypothetical) quantum gravitational field. They’d be the force carriers of the gravitational force in a theory of quantum gravity, if we had one.
Gravitational waves would still be physical waves like water waves, and they’d be composed of moving gravitons. Spacetime would likely be quantized instead of continuous; this becomes very hard to resolve since quantum mechanics needs to be reformulated to use discrete math instead of calculus, and we don’t really know how to do that (non-uniform spacetime breaks QM).
They seem to think the gravity waves are a property of gravitons.
The article talks about gravitational waves, not gravity waves. It is believed that gravitational radiation is similar to electromagnetic radiation. This would mean that gravitational waves are made up of particles called gravitons. But as the article says, we don’t know that for sure because we haven’t been able to detect gravitons yet.
Gravitons are the name for the quanta of the (hypothetical) quantum gravitational field. They’d be the force carriers of the gravitational force in a theory of quantum gravity, if we had one.
Gravitational waves would still be physical waves like water waves, and they’d be composed of moving gravitons. Spacetime would likely be quantized instead of continuous; this becomes very hard to resolve since quantum mechanics needs to be reformulated to use discrete math instead of calculus, and we don’t really know how to do that (non-uniform spacetime breaks QM).
That’s why I think the article is confused. They seem to think the gravity waves are a property of gravitons.
Yeah, not disagreeing there!
The article talks about gravitational waves, not gravity waves. It is believed that gravitational radiation is similar to electromagnetic radiation. This would mean that gravitational waves are made up of particles called gravitons. But as the article says, we don’t know that for sure because we haven’t been able to detect gravitons yet.